以此类推,就能大量减少排列组合次数。
比如10254个二进制比特,其中二进制1出现过5332次,其中二进制0出现过4922次
不换算时(二进制统计时)
奇数位的0出现过3791次;奇数位的1出现过2999次;
偶数位的0出现过1131次;偶数位的1出现过2333次;
5332-2333=2999
4922-1131=3791
3的倍数位的0出现过多少次;3的倍数位的1出现过多少次;
3的倍数+1位的0出现过多少次;3的倍数+1位的1出现过多少次;
3的倍数+2位的0出现过多少次;3的倍数+2位的1出现过多少次;
再扩展到N的倍数;N的倍数+1;N的倍数+2;……N的倍数+(N-1);其中对应的0和对应的1各出现过多少次;
换算为三进制;
奇数位;偶数位;其中A(三进制中的0)各出现了多少次;其中B(三进制的1)各出现了多少次;其中C(三进制的2)各出现了多少次;
3的倍数位;3的倍数+1位;3的倍数+2位;A,B,C各分别各出现了多少次;
再扩展到N的倍数;N的倍数+1;N的倍数+2;……N的倍数+(N-1);其中对应的A,B,C各分别各出现了过多少次;
这种可以使用简单的单一比特数据互换的快速内存专用运算单片机,就能进行快速穷举,以及进行逻辑碰撞;同样的,N一般都取素数,避免重复碰撞,比如用了2,又用4,用了5,又用10,就浪费了。
想想看,素数和无理数,在数据压缩中,还能有什么用法?
本章完
本站网站:www.123shuku.com
比如10254个二进制比特,其中二进制1出现过5332次,其中二进制0出现过4922次
不换算时(二进制统计时)
奇数位的0出现过3791次;奇数位的1出现过2999次;
偶数位的0出现过1131次;偶数位的1出现过2333次;
5332-2333=2999
4922-1131=3791
3的倍数位的0出现过多少次;3的倍数位的1出现过多少次;
3的倍数+1位的0出现过多少次;3的倍数+1位的1出现过多少次;
3的倍数+2位的0出现过多少次;3的倍数+2位的1出现过多少次;
再扩展到N的倍数;N的倍数+1;N的倍数+2;……N的倍数+(N-1);其中对应的0和对应的1各出现过多少次;
换算为三进制;
奇数位;偶数位;其中A(三进制中的0)各出现了多少次;其中B(三进制的1)各出现了多少次;其中C(三进制的2)各出现了多少次;
3的倍数位;3的倍数+1位;3的倍数+2位;A,B,C各分别各出现了多少次;
再扩展到N的倍数;N的倍数+1;N的倍数+2;……N的倍数+(N-1);其中对应的A,B,C各分别各出现了过多少次;
这种可以使用简单的单一比特数据互换的快速内存专用运算单片机,就能进行快速穷举,以及进行逻辑碰撞;同样的,N一般都取素数,避免重复碰撞,比如用了2,又用4,用了5,又用10,就浪费了。
想想看,素数和无理数,在数据压缩中,还能有什么用法?
本章完
本站网站:www.123shuku.com